Core functions

glm.cmp()

Fit a Mean Parametrized Conway-Maxwell Poisson Generalized Linear Model

cmplrtest()

Likelihood Ratio Test for nested COM-Poisson models

LRTnu()

Likelihood Ratio Test for nu = 1 of a COM-Poisson model

dcomp() pcomp() qcomp() rcomp()

The Conway-Maxwell-Poisson (COM-Poisson) Distribution.

Data sets

attendance

Attendance data set

fish

Fish data set

takeoverbids

Takeover Bids data set

cottonbolls

Cotton Bolls data set

sitophilus

Sitophilus data set

Generic extract, plot, print and summary methods

AIC(<cmp>)

Akaike's Information Criterion

coef(<cmp>)

Extract Model Coefficients from a COM-Poisson Model Fit

print(<cmp>)

Print Values of COM-Poisson Model

plot(<cmp>)

Plot Diagnostic for a glm.cmp Object

autoplot(<cmp>) gg_plot()

Plot Diagnostic for a glm.cmp Object in ggplot style

summary(<cmp>) print(<summary.cmp>)

Summarizing COM-Poisson Model Fit

residuals(<cmp>)

Extract COM-Poisson Model Residuals

model.frame(<cmp>)

Extract the Model Frame from a COM-Poisson Model Fit

model.matrix(<cmp>)

Extract the Design Matrix from a COM-Poisson Model Fit

nobs(<cmp>)

Extract the Number of Observation from a COM-Poisson Model Fit

fitted(<cmp>)

Extract Fitted Values from a COM-Poisson Model Fit

logLik(<cmp>) print(<logLik.cmp>)

Extract the (Maximized) Log-Likelihood from a COM-Poisson Model Fit

predict(<cmp>)

Model Predictions for a glm.cmp Object

update(<cmp>)

Update and Re-fit a COM-Poisson Model

tidy(<cmp>)

Tidy a(n) CMP model object

augment(<cmp>)

Augment data with information from a(n) CMP model object

confint(<cmp>)

Confidence Intervals for CMP Model Parameters

glance(<cmp>)

Glance at a(n) CMP model object

influence(<cmp>) hatvalues(<cmp>) rstandard(<cmp>) cooks.distance(<cmp>)

CMP Regression Diagnostic

vcov(<cmp>)

Extracting the Variance-Covariance Matrix from a COM-Poisson Model Fit

mpcmp-package

Mean-parametrized Conway-Maxwell Poisson Regression

is.wholenumber()

Test for a whole number

CBIND()

Combine R Objects by Columns

Z()

Calculate the Normalizing Constant for COM-Poisson distribution

comp_mean_logfactorialy() comp_mean_ylogfactorialy() comp_means() comp_variances() comp_variances_logfactorialy()

Functions to Compute Various Expected Values for the COM-Poisson Distribution

comp_lambdas() comp_lambdas_fixed_ub()

Solve for Lambda for a Particular Mean Parametrized COM-Poisson Distribution

comp_mu_loglik() comp_mu_neg_loglik_log_nu_only()

Calculate the Log-Likelihood of the COM-Poisson model

getnu()

Parameter Generator for nu

histcompPIT() qqcompPIT()

PIT Plots for a CMP Object

gg_histcompPIT() gg_qqcompPIT()

ggplot version of PIT Plots for a CMP Object

compPredProb() compPIT()

Non-randomized Probability Integral Transform

compnormRandPIT()

Random Normal Probability Integral Transform

fit_glm_cmp_const_nu()

Fit a Mean Parametrized Conway-Maxwell Poisson Generalized Linear Model with constant dispersion.

fit_glm_cmp_vary_nu()

Fit a Mean Parametrized Conway-Maxwell Poisson Generalized Linear Model with varying dispersion.

logZ()

Calculate the Normalizing Constant in log scale for COM-Poisson distribution

logZ_c()

Calculate the Normalizing Constant in log scale for COM-Poisson distribution The calculation of the function logZ will be performed here. This function is used to approximate the normalizing constant for COM-Poisson distributions via truncation. The standard COM-Poisson parametrization is being used here.