This data set gives the the number of fish species in lakes of the world; to examine the effect of the surface area of the lakes. The latitude of the lakes are also recorded.

data(fish)

Format

A data frame with 70 observations on 4 variables.

lake

name of the lakes

species

number of fish species in lakes

area

surface area (km squared)

latitude

latitude of the lakes

Details

This data set is also used to illustrate that the fitting algorithm can handle some larger count data.

References

Barbour, C. D. and Brown, J. H. (1974). Fish species diversity in lakes. The American Naturalist, 108, 473--488.

Examples

### Barbour & Brown (1974): Overdispersed Fish data
# \donttest{
data(fish)
M.fish <- glm.cmp(species ~ 1 + log(area), data = fish)
M.fish
#> 
#> Call: glm.cmp(formula = species ~ 1 + log(area), data = fish)
#> 
#> Linear Model Coefficients:
#> (Intercept)    log(area)  
#>     2.32810      0.18286  
#> 
#> Dispersion (nu): 0.0184
#> Degrees of Freedom: 69 Total (i.e. Null);  68 Residual
#> Null Deviance: 101.6675 
#> Residual Deviance: 
#> AIC: 638.8532 
#> 
summary(M.fish)
#> 
#> Call: glm.cmp(formula = species ~ 1 + log(area), data = fish)
#> 
#> Deviance Residuals: 
#>     Min       1Q   Median       3Q      Max  
#> -2.1215  -0.8038  -0.3327   0.4276   2.6966  
#> 
#> Linear Model Coefficients:
#>             Estimate Std.Err Z value Pr(>|z|)    
#> (Intercept)  2.32810 0.23410   9.945  < 2e-16 ***
#> log(area)    0.18286 0.02872   6.368 1.91e-10 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> (Dispersion parameter for Mean-CMP estimated to be 0.01841)
#> 
#> 
#>     Null deviance: 101.668  on 69 degrees of freedom
#> Residual deviance:  59.451  on 68 degrees of freedom
#> 
#> AIC: 638.8532 
#> 
# }